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SUMMARY

The channels formed between individual particles in porous media have variable dimensions and
orientations. The porosity, permeability and its anisotropy exhibit random spatial distributions. The
probabilistic approach can effectively describe the transport of contaminants through porous media and is
analysed in this paper. Numerical results are obtained by considering (I) random dispersion coefficients
without and with spatial structure, (II) random time distribution of concentration at the inlet boundary,
(ITT) random velocity distribution in the flow field without and (IV) with variable dispersion coefficient,
(V) non-linearity of the governing equation and (VI) anisotropy of the dispersion coefficient. Two methods
are used for probabilistic predictions: (1) Gaussian field approach in conjunction with Monte Carlo method
and (2) random walk method. The input random parameters are assumed to have normal and log-normal
distributions according to available experimental data. The probability distribution functions of the
contaminant concentration at different locations within the flow domain are calculated and compared with
the input distributions as a function of the mean and fluctuation Peclet numbers. The one-dimensional case is
analysed in detail and the illustrative numerical predictions are compared with analytical and experimental
results. The extension to a two-dimensional domain is discussed in the last part of this paper.
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1. PROBLEM DEFINITION AND OBJECTIVES

Motivation

The channels formed between individual particles in porous media have variable dimensions
and orientations even for spherical particles of the same size. The mean field properties such as
porosity, permeability, etc. of an assembly of particles within a control volume also exhibit a
probabilistic character, which should be reflected in the computational algorithms. The prob-
abilistic approach can effectively describe the flow mechanism and predict both mean and
fluctuating quantities.

In a flowing mixture of solids and fluid the velocity, concentration and phase configurations are
randomly distributed in space and time. In porous media the phase configuration and concen-
tration are fixed in time, with spatial randomness. This makes porous media flow a good starting
test case for more complex fluid—solid mixture flows, which are a longer-range objective of this
study. Most of the previous work in the area of flow through porous media can be classified as
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using the deterministic approach.!* There are relatively fewer publications on probabilistic
predictive methods for porous media flow, as well as for two-phase flows. Warren and Price® and
Smith and Freeze® used Monte Carlo simulation techniques for saturated flow. Tang and Pinder’
adopted perturbation theory for the numerical solution of the stochastic flow equation. Bakr et
al.® proposed spectral analysis techniques for spatial stochastic processes characterized by
covariance functions.

The work presented here deals with the transport of contaminants through porous media by
using a probabilistic approach. The main objective is to show some qualitative trends in
probabilistic field analysis of the macroscopic equations. Accordingly, simple flow situations are
preferred for analysis as asymptotic case studies for possible applications. The dependence of the
dispersion coefficient on the particle size constituting the porous medium has been obtained from
the experiments of Rummer et al.’"'! for the illustrative computational tests. The experimental
relation between the concentration and mean flow Peclet number discussed by Lavenspiel and
Smith!2? was used for comparison in this work.

Generally, the probabilistic approach has two steps:

(a) Micromechanical analysis of the flow around individual particles within a local control
volume, from which the probability distribution functions for the field parameters are
obtained (for instance, for the dispersion coefficient as a function of particle size and spatial
arrangement),

{b) Field analysis, in which the field parameters are used as input data to calculate the
probability distribution functions of the field solutions (such as concentration in a flow
domain). The field parameters may be functions of porous medium and flow conditions
(velocity, local velocity gradient, concentration gradient, etc.). The objective of this paper is
the field analysis. The input probability distribution functions of the field parameters were
assumed based on experimental correlations in our illustrative computations.

Direct simulation is the most accurate approach to obtain the probability distribution function
of the ficld solution. This approach is used in the present work. However, for complex problems in
two- and three-dimensional domains it is justifiable to adopt more time-efficient numerical
techniques, which would be a compromise between the full probabilistic description of the flow
mechanism and computer time efficiency. The finite element, finite volume and other deterministic
numerical methods can be reformulated within a stochastic framework by adding the probabilistic
dimension into the analysis.!37!3

The problem considered

We intend to determine the distribution of the probability density function of concentration in
porous media within a given flow field by using the probabulistic approach via direct numerical
simulation. The random input data are one or a combination of the field parameters attached to
the porous medium, boundary conditions or initial conditions. The effect of the spatial
dependence between neighbouring values of the field parameters is estimated. The flow without
spatial dependence is considered as an asymptotic case. Qualitative effects of the input random

parameters on the concentration distribution are investigated. Two probabilistic methods are
used:

(1) Gaussian ficld approach in conjunction with Monte Carlo method
(2) random walk method.
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The solutions of these two methods are compared with the deterministic numerical solutions and
available experimental results.

2. PROBABILISTIC MODEL

Basic equations

Transport of a contaminant. The macroscopic instantaneous governing equation for the
diffusion—convection process written in non-dimensionalized form is

oc* ocC* 0 1 oc*
! (*pe a—> +8:=0, g

R urf—— — ——
* L * *
at axi axi mean, i

where C* = (C—C,)/(Co—C,); t* =t U/L; x* = x/L; u¥ = u;/U; S* is the source term (non-
dimensionalized); Pe.,,.; = U L/D; (mean flow Peclet number in the ith direction); D; is the
dispersion coeflicient for C in the i = x-, y- or z-direction respectively; U is the reference mean
velocity; L is the length of the domain; C is the concentration as a function of the position vector x
and time, C(x, t); C, is the concentration at boundary x = 0; C,, is the initial concentration; ¢ is
time; x; is the cartesian co-ordinate (x, y or z); and u; is the seepage velocity in the i = x-, y- or z-
direction respectively.
The boundary conditions are

13

APe,- o +Bufn,C* =1, (2)
where A, B and n, define the physical conditions (n; is the projection of the unit normal vector to
the boundary on the ith co-ordinate).

In the illustrative one-dimensional problem the concentration C is imposed at x* = 0 and the
gradient dC*/0x* at x* = xk .. This equation is non-linear when D, or u* is a function of C*.
Anisotropy within the flow field is caused by the anisotropy of particle arrangement, which is
reflected mainly on the anisotropy of the dispersion coefficient. The following parameters may be
characterized by either probability distribution functions or constants: u¥, D;, S¥, A4, B, n,.

Besides the mean flow Peclet number (Pe,,,,) which is used in the deterministic analysis, the
fluctuation or standard deviation Peclet number (Pe,,,) is defined in this paper to characterize the
fluctuating transport process in space and time. For a steady mean flow, Pe,, is defined as

N 0.5
Pestd = [ Z (Pej_Pemean)z/N] 3 (3)
iz

where Pe; = u; Al/D; = (Upean + Uj)Al/(D e, + D) is the local instantaneous Peclet number
(sample j); Perean = Umean Al/Dmean; N is the number of samples (number of spatial intervals or
time intervals, respectively); and Alis the characteristic length of the fluctuating transport process.
In a numerical method Al may be the same as the mesh size.

By assuming D very small compared with D,,,,, which also implies D} u; < Dpean 4
obtains

’

;, one

Pestd = (ustd — Upean (Dstd/Dmean)) Al/l)mean . (4)

The standard deviation Peclet number (4) can be defined over a domain in space (Pe,4 ;) or time
(Pegyq. ), or their combination. The mean flow and variance (or standard deviation) Reynolds
numbers, Re,,, and Re,q, are defined in a similar way for the momentum equations.
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Typical situations

Six typical situations are investigated numerically for equation (1) as listed in TableI:
(1) random particle diameter distribution (D, is also randomly distributed in space); (If} random
boundary concentration (C at the boundary is randomly distributed in time); (IIT) random velocity
(u¥ is normally and log-normally distributed in space); (IV) random dispersion coefficient and
velocity (D, and u¥ are both normally and log-normally distributed in space); (V) non-linearity of
the governing equation (D; and u¥ are functions of C*); (VI)anisotropy of the dispersion
coefficient D, or/and velocity u¥ in a two-dimensional domain. The computational objective is to
determine the probability distribution function of concentration (C*) at different locations in the
domain (x) and various time intervals (t¥).

(I) Random dispersion coefficient. The particles constituting the porous media are assumed to be
spheres. The distribution on the particle size is considered to be normal, with a mean d,.,, and a
standard deviation d4. The relation among the dispersion coefficient D;, sphere diameter d and
seepage velocity u; (given by Darcy’s law) is taken for illustration from the experiments of

Table 1. Test cases (with constant parameters D = 006cm?s™ !,

X, mean

Cb'mean = 05 vol. %’ u:, mean — 10, t* = 00618)

Computed
Test Input concentration
case Description distribution distribution
1 Varying D, D, normal in x C normal
Cb = Cb.mean
ux = ux. mean
11 D, =D, mean C, normal in t C normal
Varying C,,
ux = ux. mean
111 D, =D, nean a. u, normal in x C normal
Cy = Cy mean b. u, log-normal in x  C log-normal
Varying u,
v Varying D, a. D, normal in x C normal
Cy = Cy, mean u, normal in x
b. D, normal in x C log-normal
u, log-normal in x
v Non-linear D, normal in x C normal
governing
equation
(D, function of C)
VI Two-dimensional D, normal in x C normal
anisotropic
diffusion
coefficient

(Dysz/a)
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Rummer® ! (CGS units):
D, = 184u} 2u'2. (5)

Figure 1 shows two probability distribution functions f;, of the one-dimensional dispersion
coefficient D, where u, = 0309 cms™*, d,,.,. = 0-2cm and D,,,, = 006 cm?s ™', which would
correspond to the mean flow Pe,.,, = 0-515. Two standard deviations of the dispersion coefficient
are considered: Dy = 0-001 and 0-005 cm?s ™ !. These correspond to Pe 4 = 0-0086 and 0-043,
respectively.

Usually D; is averaged over a small control volume. In numerical simulations D, is averaged
over the finite computational domain. Its non-uniformity as well as the anisotropy and spatial
dependence between neighbouring values are diminished with an increase of the averaging
volume,'® even if the integral length scale 4 (as defined in Reference 8) remains constant. In
practical applictions it is important to relate the experimental technique for measuring D; to the
averaging volume used in analysis.

The spatial correlation for a quantity fis introduced in the one-dimensional calculation by using
the autoregressive parameter « which takes values between 0 and 1:

f=alfici Hfiv) + 90 (6)

where f_, and f;, , are two neighbouring values and g, is a normal random variable uncorrelated
with other g/s.

(I1) Random boundary conditions. 1n this case the random parameter is the time distribution
of the point concentration C, at the inlet boundary. The dispersion coefficient and velocity are
constant within the flow domain. In the initial test cases we assume a normal distribution of C,
(Cy. mean = 050 vol.% with two values of the standard deviation, C, 4 =002 and 0-10 vol.%).

400 L :Dmgon =006 cm?/s
[Pemean-0015 |
_Dgpg =0.001cm2/s
B 300 | Pegtg = 0.0086
~
Qo
°
c
2
[V
c 200}
g
)
o
2 Dstq 70.005 em2/s
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4
0 R ]
004 007 008

Dispersion Coefficient, D, (cm2/s)

Figure 1. Input probability distribution function of the dispersion coefficient in space, f,
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(I1I') Random velocity. The dispersion coefficient and concentration at the inlet boundary are
assumed constant within the flow domain, and the random parameter is the spatial distribution of
the velocity u¥, which is a function of d2.° The velocity u is given by Darcy’s law:

_kydh 2
u—oudx-7725d, W)
where k is the instrinsic permeability (function of d?), 0 is the porosity (function of shape and size
distribution of particles), y is the liquid specific weight and u is the piezometric head.

In the initial test cases we assume a normal distribution of the velocity in the flow domain
(case I11a). Figure 2 shows the two probability distribution functions f,, of the fluctuating velocity
for uf.,, = 1'0 and two values of the standard deviation, u¥; = 0-06 and 0-12. Additional case
studies with log-normal distributions of the velocity are also analysed for the same mean and

standard deviations (case I11b).

(IV) Random dispersion coefficient and velocity. This case is a combination of cases I and III.
Both random parameters D; and uf are assumed to be normally distributed in space, with the
probability distribution functions f; and f, ., respectively. An additional test case with D, normally
distributed and uf log-normally distributed is also analysed.

(V) Non-linearity of the governing equation (the dispersion coefficient and/or velocity are
functions of concentration). The non-linearity of the dispersion process through porous media
occurs when the dispersion coefficient and/or velocity are a function of concentration. In the
illustrative test cases the relation between the dispersion coefficient D; and concentration C is
estimated from the fluidization experiments of Richardson and Zaki:!?

D, =D (1-C/Cy), 8)

70
uv*neun =1.0 N
P€ meqn=0.515 l \
B |
°0 / \\u*s.fooe(normor)
x fl [Pegs =01
< 50} | \‘
s '; \
E 40} ! \\
& 1’ | u¥,s=0.06 (lognormal )
s 3.0 MPes'd=O.l
E . 1 \\ u’tm=0-|2 (normal)
= ! /Pegyy =0.2
2
e |

u"s‘m=0.|2 (lognormal)
Peg,q=0.2

\ .
| YNy S
08 1.0 1.2 1.4
Velocity,u*

Figure 2. Input probability distribution function of the velocity in space, f»
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where D, is the random dispersion coefficient, dependent on concentration C, in the i = x-, y- or
z-direction respectively; D? is the random dispersion coefficient at C = 0; C and C,, are the
concentration and maximum packing concentration respectively; and n is an experimental
exponent.

A similar relationship to (8) can be considered between the velocity u; and concentration C. The
mean and the standard deviation of D, and u; required in the analysis are taken from cases I and 111
respectively. The inlet boundary concentration is assumed constant. In the illustrative cases the
exponent n is taken to be equal to unity.

(VI) Anisotropy of the dispersion coefficient and/or velocity. The anisotropy and non-
homogeneity of the particle arrangement cause the anisotropy of the dispersion coefficient as
well as of the velocity. The effect can be represented in the random walk approach but cannot be
represented in the Gaussian field approach. The diffusion coefficient and the velocity in the main
flow direction are generally greater than the diffusion coefficient and the velocity in other
directions. In the initial test cases both the random parameters are assumed to be normally
distributed and their values in the main flow direction are twice the values in other directions. The
mean value and the standard deviation of these two parameters are taken from cases I and II1
(D; from case I and u} from case III). The inlet boundary concentration is assumed constant.

3. GAUSSIAN FIELD APPROACH IN CONJUNCTION WITH MONTE CARLO
METHOD

Proposed computational scheme

The Monte Carlo method proceeds by constructing a hypothetical model of population Q, with
its probability space (S, F, P). F is the Borel field consisting of certain subsets of Q, and P is the set
of probabilities assigned to each element of F. In the case of random particle distribution, Q will
represent all positive real numbers and F will represent its subsets consisting of a particular set of
particle diameters. An unbiased primary estimator of the random parameter, Z(&) with £eQ, is
sampled repeatedly and independently N times to yield a convergent secondary estimator S,. The
primary estimator Z(¢,) is itself a random variable defined on (Q, F, P). Its expectation is equal to
the solution Sy and has finite standard deviation:'®

A 1 X
Sv =y X, Z(&) ©)

In the case of the Gaussian field approach the chi-square goodness-of-fit test is used to fit a
distribution to the output parameter. In this test we make a hypothesis that if one of the input
parameters is normally or log-normally distributed (ie. the diffusion coefficient, initial or
boundary condition) with the remaining input parameters constant, then the solution process, i.e.
concentration, may be represented by normal or log-normal distributions, respectively. The
procedure to check whether the hypothesis is true or false is explained in detail for the one-
dimensional case. The computational steps are:

(a) The analytical solution to the differential equation (1) with $* = 0 for constant property
values in the one-dimensional case is

x*—ukt
* _ 1_0 _x 10
C*=1 OSerfc(z(t*/Pe)o.5> (10)
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with the following initial and boundary conditions:

C*(x,0) =1, x* =0,
C*(0,t*) =0, t* >0,
C*(co,t) =1, t* >0,

where erfc () is the complementary error function and t* is time. Formula (10) is
successively applied starting from x = 0 in each finite domain Ax with the corresponding
random values of u¥ and Pe.

(b) N different values of the system variable, i.e. concentration, are calculated at each location
by using N random values of the input random parameter with the normal distribution.

(c) The hypothesis is checked using a chi-square goodness-of-fit test. If the test parameter,
namely chi-square, is found to be above a certain critical limit, then the hypothesis is
rejected, else it is assumed to be true. The chi-square goodness-of-fit test parameter x” varies
as a function of the input parameters and the number of iterations. In our tests, after 50
iterations it takes values between 5 and 11, after 200 iterations between 4 and 7, and after
500 iterations all values are less than 5.

Typical applications

Case I. Random dispersion coefficient D,. In the case of random particle size distribution we
generate N random particle diameters with a given distribution. In the illustrative test cases the
particle diameter is assumed to have a normal random distribution with a mean diameter of
0-2 cm.® With these N different random values of d, N different values of the dispersion coefficients
are calculated using the experimental relation (5).

The differential equation (1) governing the process is solved with these random values of the
dispersion coeflicients. The solution is given by equation (9). The second, third and fourth
moments of the system variable are also calculated. The mean value or the expectation of the
system variable (concentration) is then compared with the deterministic numerical solution and
available experimental results. The calculated probability distribution function f, for varying D,
and «=0 is plotted in Figure 3. The results are given at two locations, x*=0-04 and 0-1, at time
t*=0-0618. Figure 4 shows the mean and standard deviation of concentration (C¥,,, and C%;) for
varying dispersion coefficient. By increasing the autoregressive parameter «, the contaminant
propagates slightly faster with a significant increase of C%,.

Case I1. Random boundary condition C,. The same procedure is followed for random initial or
boundary condition as in the case of random particle diameter. N different random values of the
initial concentration are generated according to the given distribution, and the equation
governing the process (1) is solved N times using these random values. Figure 5 shows the

standard deviation of concentration along x* at t* = 0-0618. The mean concentration distribution
is similar to Figure 4(a).

Case [II. Random velocity u*. N different random values of the velocity are generated with the
given probability distribution (normal and log-normal). The calculated probability distribution
function f, for fluctuating velocity u* is plotted in Figure 6. The results are given at two locations,
x*=004 and 01, at t*=0-0618. Figure 7 shows the standard deviation of concentration. The
curve C*_  (x*) is similar to cases I (Figure 4(a)) and II because Pe,,,, = 0-515 is the same.
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Figure 3. Calculated distribution function of concentration, fc,, at t* =0-0618 for the distribution of D, from Figure 1:
(a) x*=0-04; (b) x*=01
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Figure 4. Caiculated distribution of concentration along x* at t* = 0-0618 for the distribution of D, from Figure 1:
(a) C::ean; (b) C;d

Case IV. Random dispersion coefficient D;, random velocity u¥. Both parameters are generated
randomly N times with the given probability distributions from cases I and III. Then the
governing differential equation (1) is solved N times and the expectation of the solution represents
the concentration. Figure 8 shows the standard deviation of concentration for random D; and u?*.
Pe,,.., 1s equal to 0-515 and then the mean concentration distribution is similar to Figure 4(a).
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Figure 5. Calculated C%, along x* at t* = 0-0618 for fluctuating concentration at x* =0
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Figure 6. Calculated distribution function of concentration, fc,, at t* =0-0618 for the velocity distribution from Figure 2
(a) x* =004; (b) x*=01

Case V. Non-linearity of the governing equation (dispersion coefficient and/or velocity are
Sfunctions of concentration). The dispersion coefficient D; and velocity u; depend on the contami-

nant concentration C (equation (8)). The non-linear equation is solved via the direct iteration
approach.!® The random parameter is generated N times according to the input probability
distribution. Then the governing differential equation (1) is solved N times. The procedure is

repeated until the solution converges. Figure 9 shows the calculated mean and standard deviation
of concentration for non-linear D;. Both curves are affected by the ratio C,/Cy.
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Figure 8. Calculated C%, along x* at t* = 0-0618 for the dispersion coefficient distribution from Figure 1 and the velocity
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In the initial test cases for the Gaussian field approach (cases I and II in Table ) the distribution
of the input parameter is normal. In case 111 the random parameter (velocity) distribution is
normal as well as log-normal. It was found with the chi-square goodness-of-fit test that the output
variable (concentration) has a normal distribution with 80% confidence level when the input
parameters D;, C, and u; are normally distributed. Pe_,.,, and Pe,, (defined in equation (3)) can be
correlated to the mean values and standard deviations of concentration, respectively. Figures 10
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Figure 10. C*_,  versus Pe,.,, at 1* = 0:0618 for cases I and Illa: (a) x* = 0-04; (b) x* = 01
and 11 illustrate the effect of Pe,,.,, on C*.,. and C*, respectively for cases I and [lla at two
locations, x* = 0-04 and 01, at time * = 0-0618. While Pe,,.,, affects the gradient of C%.,,, the
concentration fluctuations C*, appear to increase in direct proportion to Pe,,, (Figures 12 and 13).
%4 also increases with the spatial dependence expressed by the autoregression parameter x
{Figure 13). The variation is quasilinear for normal distribution functions (Figure 13(a)) and
flattens for log-normal distributions (Figure 13(b)).
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4. RANDOM WALK APPROACH

Proposed computational scheme

In the random walk approach the solution process is assumed to have a random path in the
given domain.° In particular, if the solution process is at a point x;, in the next time step it can go
to any of the directions j, where j=1, j.,,, with a probability of a;, where Zim=x a;=1. If the
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solution process is at the origin, then the probability of going in the negative co-ordinate direction
is assumed to be zero. Each step in space is a backward step in time. The random walk generally
terminates after s, ,, steps. When the solution process hits any of the boundaries in s,,,, or less
steps, the process or the walk is terminated and an appropriate value is registered as Z(&,,), m
being the mth random walk. After the termination of the walk the process is again started from the
point x;. M such different and independent random walks are performed starting at x;. &,
represents the mth random walk and Z{(£,) represents the appropriate number tallied on
termination of the mth walk. Then Z(£,,)is the primary estimator of the solution at x; and S, given
by an equation similar to (9) is the final approximation to the solution.'® The a; are the coefficients
of the finite difference representation of the differential equation governing the process. The one-
dimensional case of equation (1) with §¥ = 0 and 8Pe,,.., ./0x* =0 is
oc* oC* 1 32C*

+ u* —— e
or* T Ox*  Pepean x 0Xx*2

= 0. (11)
The finite difference form of equation (11) about a starting point i is

2

CH(XF, ") = ¥ o, CHXF, %), (12)
ji=i
where X ¥ is the co-ordinate of the starting point i, X'} are the co-ordinates of neighbouring points
J. where j=1,j...,
(1/Pe,)—h*u*
= T T T I o ]

T 2 (1/Pe,)— h*u* (13a)
1/Pe,

T 2(1/Pe,)— h*u*’ (13b)

ay

Pe, = UL/D,, L is the length of the domain, u¥ is the velocity in the x-direction, D, is the
dispersion coeflicient in the x-direction and #* is the non-dimensional step increment.
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The step size chosen for the random walk method has an upper bound. It can be determined
from the fact that 1 > «; > 0 for all j. This condition gives us

0 < h* < 1/(Pe,u). (14)

In the computational tests for the random walk method presented in this paper, we have
h* =001, with the condition h* < 0-019 (unless otherwise specified), and M = 1000. The results for
Ck... and C%, in the one-dimensional case studies are similar to the Monte Carlo method.

Typical applications

The series of input data used for the Gaussian field approach (cases I-V) are also considered for
the random walk method. The solutions were obtained for different h (step length) and M (number
of walks).

The moment of order n of a random variable w with its probability density function f, is

W=J anfwdw. (15)

The third moment (skewness) represents the asymmetry of the distribution and the fourth moment
(kurtosis) represents its flatness or steepness. Tables 11 (« = 0) and 111 (« > 0) compares these four
moments of the input and output parameters for the test cases discussed above. It is clear from
Table III that the second moments increase with g, i.e. the fluctuation becomes stronger with the
spatial correlation. The skewness increases with « in case [ but decreases in case IIIb. The kurtosis
decreases in both cases while « increases.

When the governing differential equation is non-linear (D; and/or u} are functions of
concentration), the calculated mean concentration curve is flatter at the start of the domain for
C,/Cy = 0-8 compared to the case where C, /C,, = 0-2. The second moment (standard deviation)

Table I1. Moments of the input and computed parameters at distance x* = 0-1 and time * = 0-0618

fora=0
Random input parameter (w) Output parameter (C*)
Test case woowel w2 w3 wr c* c*? c* Cc**
I Random D, 006 0001 —005 -05 015  0-0008 -0l -05
dispersion 0-06 0005 —-005 -05 015 0004 —-04 -03
coefficient
I1 Random C, 05 002 —-005 —-05 015 003 03 -03
boundary 05 010 —-005 -05 015 007 003 -03
condition
a. Normal distribution
ITT Random ut 10 006 —005 -05 015 003 03 —-04
transport 1.0 012 —-005 -05 016 005 05 —-03
velocity

b. Log-normal distribution

ul 10 006 —-004 -05 0-14 0015 -190 390
10 012 -001 —-05 013 0026 —1-61 2:60
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Table III. Moments of the input and computed parameters at distance x* = 0-1 and ¢* = 0-:0618

fora>=0

Random input parameter (w)

Output parameter {C*)

Test case o« wo w2 w3 wH L C*2 c*? Cc*+
I Random 0 D, 006 0001 -—-005 -—05 015 00008 012 —-048
dispersion 05 015 00017 —019 —046
coefficient 0-8 015 00042 —-039 —-032
ITIIb  Random 0 u¥ 10 006 -004 05 014 00147 —-190 390
transport 05 013 0025 161 261
velocity 0-8 010 00396 —-075 —042
(log-normal
distribution

*
meon

Mean Concentration, C

Pe =0.515

mean

Omean=0.06 cm? /s

Dyg = 0.001 cm2/s
Pega=0.0086

— Deterministic Numerical

Raondom Walk
+ h¥=0.08
o h =010
+n¥-018
| 1 [ J
0 0.2 04 06 0.8 1.0

Distance, x*

Figure 14. Calculated distribution of concentration along x* at t* = 0-0618 {random walk approach with M = 1000)

and third moment (skewness) are also larger in the first case compared to the second case. The
fourth moment (kurtosis) increases as the standard deviation of the input random parameter
increases in the first case (C,/Cy = 0-8) but has less effect in the second case when C,/Cy=02.

The accuracy of the solution with the random walk method depends on two main parameters,
namely h* (step length) and M (number of walks). Figure 14 shows that as h* decreases, the
solution approaches the expected solution. The optimum value of M is found to be 1000 walks.

Extension to two-dimensional case

The mean flow velocity is assumed to be in the x direction, while in the y direction there are only
the fluctuating components. The dispersion coefficient in the y direction is D, = D, /a, where D, is
determined from equation (5) and a is the anisotropy coefficient.
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Case V1. Anisotropy of the dispersion coefficient. In two-dimensional domains the anisotropy of
the disperson coefficient plays an important role because of the non-homogeneous nature of the
particle arrangement. In the initial test cases the coefficient of anisotropy a is taken to be 2-0. The
initial and boundary conditions for this test case are given in Figure 15. The results for different
values of the anisotropy coefficient a at x* = 0-5 are presented in Figure 16.

In this section only specific changes in the probabilistic algorithm for the two-dimensional case
are mentioned. The finite difference form of the two-dimensional dispersion—convection equa-
tion (1) with S¥ = 0 and dD,/0x¥ = 0 about a node i in the two-dimensional mesh is

4
CHXF, )= 3 @, CHXF, %) (16a)
=
y*
Impermecble Wall
¥ L
y : T
t I
i |
Cplt)=Cq—1 |
- ! 1
| ]
! 1 aC(t) _
| C(t=0):=0 b3 0
— -
A 1
Cph=0" 1 :
] I
o ! 1
! :
' Impermeable Woll H
| [l
L L
0 *X

Figure 15. Initial and boundary conditions for case VI

0S5t

Dy, mean =006 cmﬂ 0=10

Ux, mean = 1.0 cm/s |

*
(@]
b

Mean Concentration, Cmean

O
(€]

o
[N

0.l

Distance, y*

Figure 16. Calculated mean concentration distribution along y* for different values of the anisotropic dispersion
coefficient a = D,/D, at x* = 0'5 and t* = 0-0618 (random walk approach with M = 1000}
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where X ¥ is the co-ordinate of the starting node i, X ¥ are the co-ordinates of neighbouring nodes j,
where j = 1, ja

1/Pe, — h*u¥

- 16b
M T 3(1/Pe, + 1/Pe,) — h*(u* + u?)’ (16b)
1/Pe,
_ 16
%2 = 2(1/Pe, + 1/Pe,)— h*(u* + u*)’ (16¢)
1/Pe, —h*uf
_ 16d
5 T 2(1/Pe, + 1/Pe,)— h*(u* + u¥)’ (16d)
1/Pe, (16¢)

Y T 2(1/Pes+ 1/Pe,)— h*(u* + u?)’

Pe, =UL/D,, Pe, = U L/D,, Lis the length of the domain, #* is the non-dimensionai step size,
u¥ and uf are the velocities in the x- and y-direction respectively and D, and D, are the dispersion
coefficients in the x- and y-direction, respectively.

As explained above for the one-dimensional random walk method, * has an upper bound. The
bound in the two-dimensional case is given as

h*<min< ! —L> (17)

Pe, u}’ Pe, u*

The computational test for the two-dimensional case presented in this paper is performed with
h* = 0-08.

Comparison with deterministic numerical method

The one-dimensional form of the differential equation (1) is solved numerically with a
deterministic approach by using the PDETWO subroutine from NUMALIB.2! This subroutine
transforms the partial differential equation into an ordinary differential equation in time and then
solves the ordinary differential equation for successive time steps.

Table IV shows comparatively the mean concentration computed by using the deterministic
numerical, Gaussian and random walk approaches for test case I versus a set of experimental data.

Table IV. Comparison of the probabilistic and deterministic numerical solution of concentration versus
experimental results at t* = 00618 for constant boundary conditions and random particle size
(Dean = 006 cm?s ™!, D, = 0:001 cm?s™})

Deterministic Gaussian approach Random walk approach
Experimental® numerical approach N=100,h=01cm k=011s, m,,, =45
x* C;ean (_) C::ean (_) AC;ean (%) C:wan (_) AC:lean (o/o) C:l:an ( _) ACI'*I’ICSH (0/0)
010 0-1524 0-1618 —67 0-1588 41 0-1440 55
0-20 0-6378 0-6308 —1-0 06274 -15 0-6220 24
0-30 0-9388 0-9296 1-0 0-9346 04 0-9420 -03
0-40 0-9960 0-9936 02 0-9950 01 1-0000 —04

0-50-1-0 1-0000 1-0000 0-0 1-0000 0-0 1-0000 0-0
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The relative error with respect to the experimental results, AC¥_.. (%), is calculated by

*

C —-C¥
AC;““ — 100 mcaé* cxperimenlal‘ (18)

experimental

5. CONCLUDING REMARKS

The probabilistic approach provides improved predictions for the mean parameters compared to
the deterministic approach, particularly when the governing equations are strongly non-linear
and the field parameters are anisotropic. At the same time, one obtains supplementary
information on the probability distribution functions of the flow parameters and the effect of the
spatial structure which is useful in risk analysis, occurrence of threshold processes, etc. in porous
media flow. The present study with the solid phase at rest is the first step in the investigation of
flows with both phases in motion, in which the randomness plays an even more significant role.

The fluctuation Peclet number Pe,, was defined in this paper (equations (3) and (4)) to
characterize the fluctuating behaviour of the transport process. It was found that the standard
deviation of the concentration solution, C},, correlates quasilinearly with Pe 4 in the com-
putational test cases (Figures 12 and 13). Larger spatial correlations of the input random
parameters increase the fluctuation of the solution at the same Pe,,.

When the transport equation is linear and isotropic, the normal and log-normal distribution
functions of the diffusion coefficient in the flow field (or of concentration at the boundary)
determine the normal and log-normal distributions of the field concentration, respectively.
According to the chi-square test results, the corresponding concentration distributions have on
average an 80% confidence level.

The non-linearity of the transport equation and the anisotropy of the field parameters
determine specific effects on the first three moments of the calculated concentration distribution.
The first moment is different from the equivalent deterministic solution as a function of non-
linearity. The second moment (standard deviation) and third moment (skewness) are generally
larger (Table II) than those of the random input parameters. The fluctuation increases with the
spatial correlation (Table III).

The standard deviation of concentration at a point is directly proportional to the standard
deviation of the random input parameter(s) and local gradient of the mean concentration.
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APPENDIX: NOTATION

a anisotropy coefficient

C concentration

AC relative error of concentration with respect to experimental results
C, concentration at boundary x =0

Cu maximum concentration

D; dispersion coefficients in the i=x-, y- and z-direction, respectively
d diameter of the spheres constituting the porous material

fis fuer feo  probability density functions for D;, u* and C*, respectively
F Borel sets
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DzIFT

L w»
Z

OINR B NMMxE T

max

step length in space

length of the domain in the x- and y-axis, respectively

current and total number of random walks

projection of the unit normal vector to the boundary of the ith co-ordinate
number of iterations in Gaussian field approach

Peclet number

maximum number of time steps for termination of a random walk
secondary estimator

time

velocity in the i=x-, y- and z-direction, respectively

Cartesian co-ordinates

co-ordinate of the starting point i in random walk approach

co-ordinates of neighbouring points j in random walk approach, where j = 1, j..,
primary estimator

probability of taking a step in the jth direction, j = 1, j.,

autoregressive parameter

random parameter at the ith iteration

population

-

v
—
S

-
)

[

Subscripts

i

co-ordinate (= x, y or z)

mean mean quantity
std standard deviation

Superscripts

*

W -

4,

6.

non-dimensional quantity
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