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SUMMARY 

The channels formed between individual particles in porous media have variable dimensions and 
orientations. The porosity, permeability and its anisotropy exhibit random spatial distributions. The 
probabilistic approach can effectively describe the transport of contaminants through porous media and is 
analysed in this paper. Numerical results are obtained by considering (I) random dispersion coefficients 
without and with spatial structure, (11) random time distribution of concentration at the inlet boundary, 
(111) random velocity distribution in the flow field without and (IV) with variable dispersion coefficient, 
(V) non-linearity of the governing equation and (VI) anisotropy of the dispersion coefficient. Two methods 
are used for probabilistic predictions: (1) Gaussian field approach in conjunction with Monte Carlo method 
and (2) random walk method. The input random parameters are assumed to have normal and log-normal 
distributions according to available experimental data. The probability distribution functions of the 
contaminant concentration at different locations within the flow domain are calculated and compared with 
the input distributions as a function of the mean and fluctuation Peclet numbers. The one-dimensional case is 
analysed in detail and the illustrative numerical predictions are compared with analytical and experimental 
results. The extension to a two-dimensional domain is discussed in the last part of this paper. 

KEY WORDS Probabilistic diffusion<onvection equation Gaussian field approach Random walk method 
Fluctuation Peclet number Porous media Two-phase system 

1. PROBLEM DEFINITION AND OBJECTIVES 

Motivation 

The channels formed between individual particles in porous media have variable dimensions 
and orientations even for spherical particles of the same size. The mean field properties such as 
porosity, permeability, etc. of an assembly of particles within a control volume also exhibit a 
probabilistic character, which should be reflected in the computational algorithms. The prob- 
abilistic approach can effectively describe the flow mechanism and predict both mean and 
fluctuating quantities. 

In a flowing mixture of solids and fluid the velocity, concentration and phase configurations are 
randomly distributed in space and time. In porous media the phase configuration and concen- 
tration are fixed in time, with spatial randomness. This makes porous media flow a good starting 
test case for more complex fluid-solid mixture flows, which are a longer-range objective of this 
study. Most of the previous work in the area of flow through porous media can be classified as 
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using the deterministic approach.'-4 There are relatively fewer publications on probabilistic 
predictive methods for porous media flow, as well as for two-phase flows. Warren and PriceS and 
Smith and Freeze6 used Monte Carlo simulation techniques for saturated flow. Tang and Pinder' 
adopted perturbation theory for the numerical solution of the stochastic flow equation. Bakr et 
a[.* proposed spectral analysis techniques for spatial stochastic processes characterized by 
covariance functions. 

The work presented here deals with the transport of contaminants through porous media by 
using a probabilistic approach. The main objective is to show some qualitative trends in 
probabilistic field analysis of the macroscopic equations. Accordingly, simple flow situations are 
preferred for analysis as asymptotic case studies for possible applications. The dependence of the 
dispersion coefficient on the particle size constituting the porous medium has been obtained from 
the experiments of Rummer er for the illustrative computational tests. The experimental 
relation between the concentration and mean flow Peclet number discussed by Lavenspiel and 
Smith'' was used for comparison in this work. 

Generally, the probabilistic approach has two steps: 

(a) Micromechanical analysis of the flow around individual particles within a local control 
volume, from which the probability distribution functions for the field parameters are 
obtained (for instance, for the dispersion coefficient as a function of particle size and spatial 
arrangement); 

(b) Field analysis, in which the field parameters are used as input data to calculate the 
probability distribution functions of the field solutions (such as concentration in a Row 
domain). The field parameters may be functions of porous medium and flow conditions 
(vclocity, local velocity gradient, concentration gradient, etc.). The objective of this paper is 
the field analysis. The input probability distribution functions of the field parameters were 
assumed based on experimental correlations in our illustrative computations. 

Direct simulation is the most accurate approach to obtain the probability distribution function 
of the ficld solution. This approach is used in the present work. However, for complex problems in 
two- and three-dimensional domains it is justifiable to adopt more time-efficient numerical 
techniques, which would be a compromise between the full probabilistic description of the flow 
mechanism and computer time efficiency. The finite element, finite volume and other deterministic 
numerical methods can be reformulated within a stochastic framework by adding the probabilistic 
dimension into the analysis.13-'5 

The problem corisitlrred 

We intend to determine the distribution of the probability density function of concentration in 
porous media within a given flow field by using the probabilistic approach via direct numerical 
simulation. The random input data are one or a combination of the field parameters attached to 
the porous medium, boundary conditions or initial conditions. The effect of the spatial 
dependence between neighbouring values of the field parameters is estimated. The flow without 
spatial dependence is considered as an asymptotic case. Qualitative effects of the input random 
parameters on the concentration distribution are investigated. Two probabilistic methods are 
used : 

( 1 )  Gaussian field approach in conjunction with Monte Carlo method 
(2 )  random walk method. 
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The solutions of these two methods are compared with the deterministic numerical solutions and 
available experimental results. 

2. PROBABILISTIC MODEL 

Basic equations 

diffusion-convection process written in non-dimensionalized form is 
Transport of a contaminant. The macroscopic instantaneous governing equation for the 

where C* = (C-C,,)/(Co-Cb); t* = t U/L;  x* = x/L; u: = u , / U ;  S,* is the source term (non- 
dimensionalized); Pemean,, = CJ LID, (mean flow Peclet number in the ith direction); Di is the 
dispersion coefficient for C in the i = x-, y- or z-direction respectively; U is the reference mean 
velocity; L is the length of the domain; C is the concentration as a function of the position vector x 
and time, C(x, t); C, is the concentration at boundary x = 0; C, is the initial concentration; t is 
time; xi is the Cartesian co-ordinate (x, y or z); and ui is the seepage velocity in the i = x-, y-  or z- 
direction respectively. 

The boundary conditions are 

1 ac* 
Pe, ax: 

A - -  +Bu:niC* = 1, 

where A, B and ni define the physical conditions (ai is the projection of the unit normal vector to 
the boundary on the ith co-ordinate). 

In the illustrative one-dimensional problem the concentration C is imposed at x* = 0 and the 
gradient dC*/dx* at x* = xzax. This equation is non-linear when Di or ur is a function of C*. 
Anisotropy within the flow field is caused by the anisotropy of particle arrangement, which is 
reflected mainly on the anisotropy of the dispersion coefficient. The following parameters may be 
characterized by either probability distribution functions or constants: u;, D,, S,*, A ,  B,  n , .  

Besides the mean flow Peclet number (Pemean) which is used in the deterministic analysis, the 
fluctuation or standard deviation Peclet number (Pest,) is defined in this paper to characterize the 
fluctuating transport process in space and time. For a steady mean flow, Pestd is defined as 

where Pej = uj  Al/Dj = (u,,,, + u>)Al/(Dmean + DJ)  is the local instantaneous Peclet number 
(samplej); Pemean = U,,,, Al/D,,,,,; N is the number of samples (number of spatial intervals or 
time intervals, respectively); and A I is the characteristic length of the fluctuating transport process. 
In a numerical method A1 may be the same as the mesh size. 

By assuming DJ very small compared with D,,,,, which also implies DJ uJ 4 D,,,, u3, one 
obtains 

Pestd = (%td - (Dstd/Dmean)) A1/Drnean. (4) 

The standard deviation Peclet number (4) can be defined over a domain in space (Pes,d,,) or time 
(Pestd, 0, or their combination. The mean flow and variance (or standard deviation) Reynolds 
numbers, Remean and Restd, are defined in a similar way for the momentum equations. 
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Typical situations 

Six typical situations are investigated numerically for equation (1) as listed in Table I: 
(1) random particle diameter distribution (Di is also randomly distributed in space); (11) random 
boundary concentration (C at the boundary is randomly distributed in time); (111) random velocity 
(ur  is normally and log-normally distributed in space); (IV) random dispersion coefficient and 
velocity (Di and u: are both normally and log-normally distributed in space); (V) non-linearity of 
the governing equation (Di and u l  are functions of C*); (V1)anisotropy of the dispersion 
coefficient Di or/and velocity ur in a two-dimensional domain. The computational objective is to 
determine the probability distribution function of concentration (C*)  at different locations in the 
domain (x) and various time intervals (t*). 

( I )  Random dispersion coeficient. The particles constituting the porous media are assumed to be 
spheres. The distribution on the particle size is considered to be normal, with a mean d,,,, and a 
standard deviation ds td .  The relation among the dispersion coefficient Di, sphere diameter d and 
seepage velocity ui (given by Darcy's law) is taken for illustration from the experiments of 

Table I. Test cases (with constant parameters D,,,,,, = 0.06 cm2 s -  I ,  

Cb.mean = 0.5 VOI. %, u : , ~ ~ ~ ~  = 1.0, t* = 0.0618) 

Computed 
Test Input concentration 
case Description distribution distribution 

I Varying D, D, normal in x C normal 
cb = Cb.mean 

ux = ux,  mean 

I1 Dx = Dx,mean Cb normal in t C normal 
Varying Cb 
ux = ux.mean 

111 Dx = Dx,mean a. u, normal in x C normal 

cb = Cb,mean b. u, log-normal in x C log-normal 
Varying u, 

IV Varying D, a. D, normal in x C normal 
cb = Cb,mean u, normal in x 

b. D, normal in x 
u, log-normal in x 

C log-normal 

V Non-linear D, normal in x C normal 
governing 
equation 
(D, function of C) 

VI Two-dimensional D, normal in x C normal 
anisotropic 
diffusion 
coefficient 
(D, = D,/a)  
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Rummer'-' (CGS units): 

Di = 1 ~ 8 4 ~ ~ " ~ " ~ .  ( 5 )  

Figure 1 shows two probability distribution functions f D  of the one-dimensional dispersion 
coefficient D,, where u, = 0.309 cm s-', d,,,, = 0.2 cm and D,,,, = 0.06 cm2 s -  ', which would 
correspond to the mean flow Pemcan = 0.5 15. Two standard deviations of the dispersion coefficient 
are considered: Dsld = 0401 and 0405 cmz s -  '. These correspond to Pestd = 04086 and 0.043, 
respectively. 

Usually Di is averaged over a small control volume. In numerical simulations Di is averaged 
over the finite computational domain. Its non-uniformity as well as the anisotropy and spatial 
dependence between neighbouring values are diminished with an increase of the averaging 
volume,Ih even if the integral length scale i. (as defined in Reference 8) remains constant. In 
practical applictions it is important to relate the experimental technique for measuring Di to the 
averaging volume used in analysis. 

The spatial correlation for a quantityfis introduced in the one-dimensional calculation by using 
the autoregressive parameter r which takes values between 0 and 1: 

(6) 

where,f;- and,A+ are two neighbouring values and g i  is a normal random variable uncorrelated 
with other yj's. 

1; = ~(1;- I +.A+ 1 )  + YiT 

( I / )  Random boundary conditions. I n  this case the random parameter is the time distribution 
of the point concentration c h  at the inlet boundary. The dispersion coefficient and velocity are 
constant within the flow domain. In the initial test cases we assume a normal distribution of C, 
(Ch.n,can = 0.50 vol.% with two values of the standard deviation, C h . s t d  = 0.02 and 0.10 vol.%). 

- 
400 - ~D,,,,=006cmE/s 

'D,),, = 0.001 c m P / s  
PeSld = 0 0086 

D , ~ ~  =O.OOS c m 2 / s  
, Pe,fd = 0.043 

---.-.___.__ 

-0 300 

c 

'" 
n 

I00 

0.04 0.05 0.06 a07 0.08 

Dispersion Coefficient, D, (cm2/s) 

Figure I .  Input probability distribution function of the dispersion coefficient in space,j, 
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(111) Random velocity. The dispersion coefficient and concentration at the inlet boundary are 
assumed constant within the flow domain, and the random parameter is the spatial distribution of 
the velocity u:, which is a function of d2.9 The velocity u is given by Darcy's law: 

where k is the instrinsic permeability (function of d') ,  6 is the porosity (function of shape and size 
distribution of particles), y is the liquid specific weight and p is the piezometric head. 

In the initial test cases we assume a normal distribution of the velocity in the flow domain 
(case IIIa). Figure 2 shows the two probability distribution functionsf,, of the fluctuating velocity 
for u:,,, = 1.0 and two values of the standard deviation, uZd = 0.06 and 0.12. Additional case 
studies with log-normal distributions of the velocity are also analysed for the same mean and 
standard deviations (case IIIb). 

( I  V )  Random dispersion coefficient and velocity. This case is a combination of cases I and 111. 
Both random parameters Di and u r  are assumed to be normally distributed in space, with the 
probability distribution functionsf, andf,, , respectively. An additional test case with Di normally 
distributed and u? log-normally distributed is also analysed. 

( V )  Non-linearity of the governing equation (the dispersion coefficient andlor velocity are 
functions of concentration). The non-linearity of the dispersion process through porous media 
occurs when the dispersion coefficient and/or velocity are a function of concentration. In the 
illustrative test cases the relation between the dispersion coefficient Di and concentration C is 
estimated from the fluidization experiments of Richardson and Zaki: 

(8) Di = DP (1 - C/C, )", 

c 
I? 

P 
?! n 

c 
3 

c 

0 6  0 8  1.0 1.2 1.4 

Ve I oc i t  y, u * 
Figure 2. Input probability distribution function of the velocity in space,f,. 
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where Di is the random dispersion coefficient, dependent on concentration C, in the i = X-, y -  or 
z-direction respectively; Dp is the random dispersion coefficient at C = 0; C and CM are the 
concentration and maximum packing concentration respectively; and n is an experimental 
exponent. 

A similar relationship to (8) can be considered between the velocity ui and concentration C. The 
mean and the standard deviation of Di and ui required in the analysis are taken from cases I and 111 
respectively. The inlet boundary concentration is assumed constant. In the illustrative cases the 
exponent n is taken to be equal to unity. 

(VZ) Anisotropy of the dispersion coefJicient andlor velocity. The anisotropy and non- 
homogeneity of the particle arrangement cause the anisotropy of the dispersion coefficient as 
well as of the velocity. The effect can be represented in the random walk approach but cannot be 
represented in the Gaussian field approach. The diffusion coefficient and the velocity in the main 
flow direction are generally greater than the diffusion coefficient and the velocity in other 
directions. In the initial test cases both the random parameters are assumed to be normally 
distributed and their values in the main flow direction are twice the values in other directions. The 
mean value and the standard deviation of these two parameters are taken from cases I and 111 
(Di from case I and uT from case 111). The inlet boundary concentration is assumed constant. 

3. GAUSSIAN FIELD APPROACH IN CONJUNCTION WITH MONTE CARL0 
METHOD 

Proposed computational scheme 

The Monte Carlo method proceeds by constructing a hypothetical model of population R, with 
its probability space (0, F ,  P). F is the Bore1 field consisting of certain subsets of R, and P is the set 
of probabilities assigned to each element of F .  In the case of random particle distribution, R will 
represent all positive real numbers and F will represent its subsets consisting of a particular set of 
particle diameters. An unbiased primary estimator of the random parameter, Z ( t )  with 5 E R, is 
sampled repeatedly and independently N times to yield a convergent secondary estimator S N .  The 
primary estimator Z(&)  is itself a random variable defined on (R, F ,  P ) .  Its expectation. is equal to 
the solution SN and has finite standard deviation:I8 

In the case of the Gaussian field approach the chi-square goodness-of-fit test is used to fit a 
distribution to the output parameter. In this test we make a hypothesis that if one of the input 
parameters is normally or log-normally distributed (i.e. the diffusion coefficient, initial or 
boundary condition) with the remaining input parameters constant, then the solution process, i.e. 
concentration, may be represented by normal or log-normal distributions, respectively. The 
procedure to check whether the hypothesis is true or false is explained in detail for the one- 
dimensional case. The computational steps are: 

(a) The analytical solution to the differential equation (1) with S,* = 0 for constant property 
values in the one-dimensional case is 

C* = 1 -05erfc (&$:.s) 
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with the following initial and boundary conditions: 

C*(x, 0) = 1, 

C*(O, t*) = 0, 
C*(Co, t )  = 1, 

x* 2 0, 
t* 2 0, 
t* 2 0, 

where erfc ( ) is the complementary error function and t* is time. Formula (10) is 
successively applied starting from x = 0 in each finite domain Ax with the corresponding 
random values of u: and Pe. 

(b) N different values of the system variable, i.e. concentration, are calculated at each location 
by using N random values of the input random parameter with the normal distribution. 

(c) The hypothesis is checked using a chi-square goodness-of-fit test. If the test parameter, 
namely chi-square, is found to be above a certain critical limit, then the hypothesis is 
rejected, else it is assumed to be true. The chi-square goodness-of-fit test parameter x2 varies 
as a function of the input parameters and the number of iterations. In our tests, after 50 
iterations it takes values between 5 and 11, after 200 iterations between 4 and 7, and after 
500 iterations all values are less than 5. 

Typical applications 

Case I .  Random dispersion coefficient D i .  In the case of random particle size distribution we 
generate N random particle diameters with a given distribution. In the illustrative test cases the 
particle diameter is assumed to have a normal random distribution with a mean diameter of 
0.2 ~ m . ~  With these N different random values of d, N different values of the dispersion coefficients 
are calculated using the experimental relation (5). 

The differential equation (1) governing the process is solved with these random values of the 
dispersion coefficients. The solution is given by equation (9). The second, third and fourth 
moments of the system variable are also calculated. The mean value or the expectation of the 
system variable (concentration) is then compared with the deterministic numerical solution and 
available experimental results. The calculated probability distribution functionf,, for varying D, 
and C Y = O  is plotted in Figure 3. The results are given at two locations, x* =0.04 and 0.1, at time 
t* =0.0618. Figure 4 shows the mean and standard deviation of concentration (Czean and C:,) for 
varying dispersion coefficient. By increasing the autoregressive parameter CY, the contaminant 
propagates slightly faster with a significant increase of C:,. 

Case 11. Random boundary condition C, .  The same procedure is followed for random initial or 
boundary condition as in the case of random particle diameter. N different random values of the 
initial concentration are generated according to the given distribution, and the equation 
governing the process (1) is solved N times using these random values. Figure 5 shows the 
standard deviation of concentration along x* at t* = 0061 8. The mean concentration distribution 
is similar to Figure 4(a). 

Case 111. Random velocity u*. N different random values of the velocity are generated with the 
given probability distribution (normal and log-normal). The calculated probability distribution 
function,f,, for fluctuating velocity u* is plotted in Figure 6. The results are given at two locations, 
x*=O.O4 and 0.1, at t*=0.0618. Figure 7 shows the standard deviation of concentration. The 
curve Cz,,,(x*) is similar to cases I (Figure 4(a)) and I1 because Pemean = 0.515 is the same. 
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Figure 3. Calculated distribution function of concentration,f&, at t* =0.0618 for the distribution of D, from Figure 1: 
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Figure 4. Calculated distribution of concentration along x* at t* = 0.0618 for the distribution of D, from Figure 1: 
(a) Can ; (b) C:, 

Case I V. Random dispersion coeficient D i ,  random velocity u:. Both parameters are generated 
randomly N times with the given probability distributions from cases I and 111. Then the 
governing differential equation (1) is solved N times and the expectation of the solution represents 
the concentration. Figure 8 shows the standard deviation of concentration for random Di and u:. 
Pemean is equal to 0.515 and then the mean concentration distribution is similar to Figure 4(a). 
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Figure 6. Calculated distribution function of concentration,f&, at t* = 0.0618 for the velocity distribution from Figure 2 
(a) x* = 0.04; (b) x*=O,1 

Case V.  Non-linearity of the governing equation (dispersion coeflcient andfor velocity are 
functions of concentration). The dispersion coefficient Di and velocity ui depend on the contami- 
nant concentration C (equation (8)). The non-linear equation is solved via the direct iteration 
approach." The random parameter is generated N times according to the input probability 
distribution. Then the governing differential equation (1) is solved N times. The procedure is 
repeated until the solution converges. Figure 9 shows the calculated mean and standard deviation 
of concentration for non-linear Di. Both curves are affected by the ratio C , / C M .  
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Figure 7. Calculated C:,, along x* at I* = 04618 for the velocity distribution from Figure 3 
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Figure 8. Calculated C:, along X* at I* = 0.0618 for the dispersion coefficient distribution from Figure I and the veldcity 
distribution from Figure 3 

In the initial test cases for the Gaussian field approach (cases I and I1  in Table I) the distribution 
of the input parameter Is normal. In case I l l  the random parameter (velocity) distribution is 
normal as well as log-normal. It was found with the chi-square goodness-of-fit test that the output 
variable (concentration) has a normal distribution with 80% confidence level when the input 
parameters D i ,  C, and ui are normally distributed. Pemesn and Pectd (defined in equation (3)) can be 
correlated to the mean values and standard deviations of concentration, respectively. Figures 10 
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Figure 9. Calculated distribution of concentration along x* at' t* = 0,0618 for non-linear governing equation: 
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Figure 10. C&,, versus Pe,,,, at I* = 0.0618 for cases I and Illa: (a) X *  = 0.04; (b) .s* = 0.1 

and 1 1  illustrate the effect of ferncan oh C:,,, and Cfd respectively for cases 1 and Illa at two 
locations. s* = 0.04 and 0.1, at time t*  = 04)618. While Pemcan affects the gradient of C:,,,, the 
concentration fuctuations C2d appear to increase in direct proportion to PeStd (Figures 12 and 13). 
C:, also increases with the spatial dependence expressed by the autoregression parameter r 
(Figure 13). The variation is quasilinear for normal distribution functions (Figure 13(a)) and 
flattens for lognormal distributions (Figure I3(b)). 
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4. RANDOM WALK APPROACH 

Proposed computationul scheme 

In the random walk approach the solution process is assumed to have a random path in the 
given domain.*’ In particular, if the solution process is at a point xi, in the next time step it can go 
to any of the directions j ,  where j =  1, j,,,, with a probability of u j ,  where C i y  aj = 1 .  If the 
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Figure 13. Cad versus Pestd at t* = 0.0618 and x* = 0.04 for various autoregressive parameters a: (a) case I; (b) case IIIb 

solution process is at the origin, then the probability of going in the negative co-ordinate direction 
is assumed to be zero. Each step in space is a backward step in time. The random walk generally 
terminates after s,,, steps. When the solution process hits any of the boundaries in s,,, or less 
steps, the process or the walk is terminated and an appropriate value is registered as Z(tJ,), m 
being the mth random walk. After the termination of the walk the process is again started from the 
point x i .  M such different and independent random walks are performed starting at xi. tJ, 
represents the mth random walk and Z(tJ,) represents the appropriate number tallied on 
termination of the mth walk. Then Z(<,) is the primary estimator of the solution at xi and S, given 
by an equation similar to (9) is the final approximation to the solution.’* The clj are the coefficients 
of the finite difference representation of the differential equation governing the process. The one- 
dimensional case of equation (1) with s,* = 0 and aPe,,,,,,/ax* = 0 is 

- 0. 
ac* ac* 1 a w  at* + UZ- - _ _ _ ~  - 

ax* Pemean,, ax*2 

The finite difference form of equation (1 1) about a starting point i is 

C * ( X f ,  t*)  = 1 clj C*(Xj* ,  t*) ,  
j = i  

where X :  is the co-ordinate of the starting point i, XT are the co-ordinates of neighbouring points 
j ,  where j = I ,  j,,,, 

( l/Pe,) - h* u: 
2 (  l/Pex) - h* u: ’ 

c(1 = 

Pe, = U LID,, L is the length of the domain, u,* is the velocity in the x-direction, D ,  is the 
dispersion coefficient in the x-direction and h* is the non-dimensional step increment. 
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The step size chosen for the random walk method has an upper bound. It can be determined 
from the fact that 1 2 z j  2 0 for allj. This condition gives us 

0 6 h* < l/(Pe,u:). (14) 

In the computational tests for the random walk method presented in this paper, we have 
h* =O.Ol,  with the condition h* 6 0.019 (unless otherwise specified), and M = 1000. The results for 
C:,,, and C:,, in the one-dimensional case studies are similar to the Monte Carlo method. 

Typical applications 

The series of input data used for the Gaussian field approach (cases I-V) are also considered for 
the random walk method. The solutions were obtained for different It (step length) and M (number 
of walks). 

The moment of order n of a random variable w with its probability density function f, is 
+ X  - 

w" = w"f,dw. 
J - m  

The third moment (skewness) represents the asymmetry of the distribution and the fourth moment 
(kurtosis) represents its flatness or steepness. Tables 11 (a = 0) and 111 (a 2 0) compares these four 
moments of the input and output parameters for the test cases discussed above. I t  is clear from 
Table 111 that the second moments increase with r ,  i.e. the fluctuation becomes stronger with the 
spatial correlation. The skewness increases with z in case I but decreases in case IIIb. The kurtosis 
decreases in both cases while r increases. 

When the governing differential equation is non-linear (Di and/or ut are functions of 
concentration), the calculated mean concentration curve is flatter at the start of the domain for 
cb/c, = 0.8 compared to the case where Cb/c, = 0.2. The second moment (standard deviation) 

Table 11. Moments of the input and computed parameters at distance x* = 0.1 and time r* = 0.0618 
for SL = 0 

Test case 

Random input parameter (w) Output parameter (C*) 
- 

w*4 

I Random D, 0.06 0901 -0.05 -0.5 0 1 5  0ooO8 -0.1 -0.5 
dispersion 0.06 0.005 -0.05 -0.5 0.15 O W 4  - 0 4  -0.3 
coefficient 

I 1  Random C, 0.5 002 -0.05 -0.5 0.15 0.03 0.3 -0.3 
boundary 0.5 0.10 -0.05 -0.5 0.15 0.07 043 -0.3 
condition 

a. Normal distribution 

111 Random U: 1.0 0.06 -0.05 -0.5 0.15 0.03 0.3 -0.4 
transport 1.0 0.12 -0.05 -0.5 0.16 0.05 0.5 -0.3 
velocity 

b. Log-normal distribution 

u: 1.0 0.06 -0.04 -0.5 0.14 0.015 - 1.90 3.90 
1.0 0.12 -0.01 -0.5 0.13 0.026 -1.61 2.60 
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Table 111. Moments of the input and computed parameters at distance x* = 0.1 and t* = 0.0618 
for a > 0 

Random input parameter (w)  Output parameter (C*) 
~-~ ~~ ~ ~ 

Test case a w w*1 w*2 w*3 w*4 C*l C*2 c*3 c*4 

I Random 0 D, 0.06 0001 -0.05 -05 0.15 0.0008 -0.12 -0.48 
dispersion 0.5 0.15 00017 -0.19 -046 

0.15 0'0042 -0.39 -0.32 coefficient 0.8 

IlIb Random 0 u,* 1.0 0.06 -004 -0.5 0.14 0'0147 -1.90 3.90 
transport 0.5 0.13 0.0256 -1.61 2.61 
velocity 08 0.10 0.0396 -0.75 -042 
(log-normal 
distribution 

- i  0,e.n=0.06 cm2 / I  

Perneon= 0 515 
= 0.001 c m 2 / s  

- 4 - D e t e r m i n i s t i c  N u m e r i c a l  

C 
0 

r" 0 2  

R o n  d o m  W a I k 

0 0 2  04 0 6  0 8  10 

Distance,  x *  

Figure i4. Calculated distribution of concentration along x* at t* = 0.0618 (random walk approach with M = 1OOO) 

and third moment (skewness) are also larger in the first case compared to the second case. The 
fourth moment (kurtosis) increases as the standard deviation of the input random parameter 
increases in the first case ( C , / C ,  = 0.8) but has less effect in the second case when C , / C ,  = 0 2 .  

The accuracy of the solution with the random walk method depends on two main parameters, 
namely h* (step length) and M (number of walks). Figure 14 shows that as h* decreases, the 
solution approaches the expected solution. The optimum value of M is found to be 1000 walks. 

Extension to two-dimensional case 

The mean flow velocity is assumed to be in the x direction, while in the y direction there are only 
the fluctuating components. The dispersion coefficient in the y direction is D, = DJa ,  where D, is 
determined from equation (5) and a is the anisotropy coefficient. 
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Case VI. Anisotropy of the dispersion coeficient. In two-dimensional domains the anisotropy of 
the disperson coefficient plays an important role because of the non-homogeneous nature of the 
particle arrangement. In the initial test cases the coefficient of anisotropy a is taken to be 2.0. The 
initial and boundary conditions for this test case are given in Figure 15. The results for different 
values of the anisotropy coefficient a at x* = 0.5 are presented in Figure 16. 

In this section only specific changes in the probabilistic algorithm for the two-dimensional case 
are mentioned. The finite difference form of the two-dimensional dispersion-convection equa- 
tion (1 )  with Sfr = 0 and dD,/dx: = 0 about a node i in the two-dimensional mesh is 

4 
C * ( X * ,  t* )  = c cl j  C*(Xj*, t*), 

j =  1 

I lmpermeoble Wall * 
' Y  I I 

I 

I I 

I 1 L 

I Impermeable Wol l  I 
* 

0 1; 

Figure 15. Initial and boundary conditions for case VI 

0.3 

u 

Distonce, y *  

Figure 16. Calculated mean concentration distribution along y* for different values of the anisotropic dispersion 
coefficient a = D,/D, at X*  = 0.5 and t* = 0.0618 (random walk approach with M = IOOO) 



1448 M. C. ROCO. J. KHADILKAR AND J. ZHANG 

where X f  is the co-ordinate of the starting node i ,  X; are the co-ordinates of neighbouring nodesj, 
where j = 1, j,,,, 

1/Pe, - h*u: 
a1 = 

2(1/Pe,+ l /Pe , ) -h*(u:  +$)' 

1/Pe, 
2(1/Pe,+ l /Pe , ) -h*(u:  +u:) '  

a2 = 

l / P e ,  - h*u: 
2(1/Pe,+ l /Pe , ) -h*(u:  + u : ) '  

a3 =- 

Pe, = U LID,, Pe, = U LID,, L is the length of the domain, h* is the non-dimensional step size, 
u: and u,* are the velocities in the x- and y-direction respectively and D, and D, are the dispersion 
coefficients in the x- and y-direction, respectively. 

As explained above for the one-dimensional random walk method, h* has an upper bound. The 
bound in the two-dimensional case is given as 

h* < min (-, 1 -). 1 
Pe,u,* Pe,u: 

The computational test for the two-dimensional case presented in this paper is performed with 
h* = 0.08. 

Comparison with deterministic numerical method 

The one-dimensional form of the differential equation (1) is solved numerically with a 
deterministic approach by using the PDETWO subroutine from NUMALIB." This subroutine 
transforms the partial differential equation into an ordinary differential equation in time and then 
solves the ordinary differential equation for successive time steps. 

Table IV shows comparatively the mean concentration computed by using the deterministic 
numerical, Gaussian and random walk approaches for test case I versus a set of experimental data. 

Table IV. Comparison of the probabilistic and deterministic numerical solution of concentration versus 
experimental results a t  t* = 0.0618 for constant boundary conditions and random particle size 

(D,,,, = 0.06cm2 s - ' ,  D,,, = OQO1 cm2s- ' )  

Experimental' 
Deterministic Gaussian approach 

N = 100, h = 0.1 cm numerical approach 

C z e a n  (-1 A G e a n  (YO) C k a n  ( -1  Ac:ean  ('//.I 

0.10 0.1 524 
0.20 0.6378 
0.30 0.9388 
0.40 0.9960 
0.50- 1 '0 1 .om0 

0.1618 - 6.1 0.1588 4.1 
0.6308 - 1.0 0.6274 - 1.5 
0.9296 1 .o 0.9346 0.4 
0.9936 0.2 0.9950 0.1 
1 .0000 0.0 1 ~0000 0.0 

Random walk approach 
k = 0.1 1 s, mmax = 45 
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The relative error with respect to the experimental results, AC2,an (%), is calculated by 

5. CONCLUDING REMARKS 

The probabilistic approach provides improved predictions for the mean parameters compared to 
the deterministic approach, particularly when the governing equations are strongly non-linear 
and the field parameters are anisotropic. At the same time, one obtains supplementary 
information on the probability distribution functions of the flow parameters and the effect of the 
spatial structure which is useful in risk analysis, occurrence of threshold processes, etc. in porous 
media flow. The present study with the solid phase at rest is the first step in the investigation of 
flows with both phases in motion, in which the randomness plays an even more significant role. 

The fluctuation Peclet number Pesfd was defined in this paper (equations (3) and (4)) to 
characterize the fluctuating behaviour of the transport process. It was found that the standard 
deviation of the concentration solution, c:d , correlates quasilinearly with PeSld in the com- 
putational test cases (Figures 12 and 13). Larger spatial correlations of the input random 
parameters increase the fluctuation of the solution at the same Pea,,,. 

When the transport equation is linear and isotropic, the normal and log-normal distribution 
functions of the diffusion coefficient in the flow field (or of concentration at the boundary) 
determine the normal and log-normal distributions of the field concentration, respectively. 
According to the chi-square test results, the corresponding concentration distributions have on 
average an 80% confidence level. 

The non-linearity of the transport equation and the anisotropy of the field parameters 
determine specific effects on the first three moments of the calculated concentration distribution. 
The first moment is different from the equivalent deterministic solution as a function of non- 
linearity. The second moment (standard deviation) and third moment (skewness) are generally 
larger (Table 11) than those of the random input parameters. The fluctuation increases with the 
spatial correlation (Table 111). 

The standard deviation of concentration at a point is directly proportional to the standard 
deviation of the random input parameter(s) and local gradient of the mean concentration. 
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APPENDIX: NOTATION 

anisotropy coefficient 
concentration 
relative error of concentration with respect to experimental results 
concentration at boundary x = 0 
maximum concentration 
dispersion coefficients in the i = x-, y- and z-direction, respectively 
diameter of the spheres constituting the porous material 
probability density functions for D i ,  u* and C*, respectively 
Bore1 sets 
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step length in space 
length of the domain in the x- and y-axis, respectively 
current and total number of random walks 
projection of the unit normal vector to the boundary of the ith co-ordinate 
number of iterations in Gaussian field approach 
Peclet number 
maximum number of time steps for termination of a random walk 
secondary estimator 
time 
velocity in the i =  x-, y- and z-direction, respectively 
Cartesian co-ordinates 
co-ordinate of the starting point i in random walk approach 
co-ordinates of neighbouring points j in random walk approach, where j = 1, j,,, 
primary estimator 
probability of taking a step in the j th direction, j = 1, j,,, 
autoregressive parameter 
random parameter at the ith iteration 
population 

co-ordinate (= x, y or z) 
mean quantity 
standard deviation 

Superscripts 
* non-dimensional quantity 
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